Towards a structural understanding of the fibrillization pathway in Machado-Joseph's disease: trapping early oligomers of non-expanded ataxin-3.

نویسندگان

  • Luís Gales
  • Luísa Cortes
  • Carla Almeida
  • Carlos V Melo
  • Maria do Carmo Costa
  • Patrícia Maciel
  • David T Clarke
  • Ana Margarida Damas
  • Sandra Macedo-Ribeiro
چکیده

Machado-Joseph's disease is caused by a CAG trinucleotide repeat expansion that is translated into an abnormally long polyglutamine tract in the protein ataxin-3. Except for the polyglutamine region, proteins associated with polyglutamine diseases are unrelated, and for all of these diseases aggregates containing these proteins are the major components of the nuclear proteinaceous deposits found in the brain. Aggregates of the expanded proteins display amyloid-like morphological and biophysical properties. Human ataxin-3 containing a non-pathological number of glutamine residues (14Q), as well as its Caenorhabditis elegans (1Q) orthologue, showed a high tendency towards self-interaction and aggregation, under near-physiological conditions. In order to understand the discrete steps in the assembly process leading to ataxin-3 oligomerization, we have separated chromatographically high molecular mass oligomers as well as medium mass multimers of non-expanded ataxin-3. We show that: (a) oligomerization occurs independently of the poly(Q)-repeat and it is accompanied by an increase in beta-structure; and (b) the first intermediate in the oligomerization pathway is a Josephin domain-mediated dimer of ataxin-3. Furthermore, non-expanded ataxin-3 oligomers are recognized by a specific antibody that targets a conformational epitope present in soluble cytotoxic species found in the fibrillization pathway of expanded polyglutamine proteins and other amyloid-forming proteins. Imaging of the oligomeric forms of the non-pathological protein using electron microscopy reveals globular particles, as well as short chains of such particles that likely mimic the initial stages in the fibrillogenesis pathway occurring in the polyglutamine-expanded protein. Thus, they constitute potential targets for therapeutic approaches in Machado-Joseph's disease, as well as valuable diagnostic markers in disease settings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A tale of a tail: Structural insights into the conformational properties of the polyglutamine protein ataxin-3

Ataxin-3 is the protein responsible for the neurodegenerative polyglutamine disease Spinocerebellar ataxia type 3. Full structural characterisation of ataxin-3 is required to aid in understanding the mechanism of disease. Despite extensive study, little is known about the conformational properties of the full-length protein, in either its non-expanded healthy or expanded pathogenic forms, parti...

متن کامل

Ataxin-3 with an altered conformation that exposes the polyglutamine domain is associated with the nuclear matrix.

Spinocerebellar ataxia type-3 or Machado-Joseph disease (SCA3/MJD) is a member of the CAG/polyglutamine repeat disease family. In this family of disorders, a normally polymorphic CAG repeat becomes expanded, resulting in expression of an expanded polyglutamine domain in the disease gene product. Experimental models of polyglutamine disease implicate the nucleus in pathogenesis; however, the lin...

متن کامل

RNA Interference Mitigates Motor and Neuropathological Deficits in a Cerebellar Mouse Model of Machado-Joseph Disease

Machado-Joseph disease or Spinocerebellar ataxia type 3 is a progressive fatal neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Recent studies demonstrate that RNA interference is a promising approach for the treatment of Machado-Joseph disease. However, whether gene silencing at an early time-point is able to prevent the appearance of motor behavior deficits ty...

متن کامل

Overexpression of the autophagic beclin-1 protein clears mutant ataxin-3 and alleviates Machado-Joseph disease.

Machado-Joseph disease, also known as spinocerebellar ataxia type 3, is the most common of the dominantly inherited ataxias worldwide and is characterized by mutant ataxin-3 misfolding, intracellular accumulation of aggregates and neuronal degeneration. Here we investigated the implication of autophagy, the major pathway for organelle and protein turnover, in the accumulation of mutant ataxin-3...

متن کامل

Ataxin-3 and Its E3 Partners: Implications for Machado–Joseph Disease

Machado-Joseph disease (MJD) is the most common dominant inherited ataxia worldwide, caused by an unstable CAG trinucleotide expansion mutation within the SCA3 gene resulting in an expanded polyglutamine tract within the ataxin-3 protein. Ataxin-3 functions as a deubiquitinating enzyme (DUB), within the Ub system and whilst many DUBs are known to partner with and deubiquitinate specific E3-Ub l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular biology

دوره 353 3  شماره 

صفحات  -

تاریخ انتشار 2005